Пластичность нервной системы это

При повреждении отростков нейронов они способны к восстановлению (регенерации). Регенерация нервных воло­кон подробно описана в разделе посвящённом нервной ткани. При повреждении перикариона нейрон погибает. Не­смотря на то, что нервные клетки во взрослом организме не могут размножаться, они обладают высокой способностью к внутриклеточной регенерации. При гибели одних нейронов, другие, сохранившиеся нейроны, увеличиваются в размерах (гипертрофия), в их цитоплазме возрастает число и интен­сивность работы органоидов. При этом усиливается аксоток и разрастаются нервные окончания, особенно межнейро­нальные синапсы. Этим объясняется способность мозга вос­станавливать свои функции при повреждении, в результате травмы или болезни.

Пластичность нервной системы проявляется и в её морфо-функциональной перестройке на протяжении жизни человека: в процессе обучения, при изменении вида его дея­тельности (смена умственного труда на физический). При этом наблюдается гипертрофия интенсивно функционирую­щих нейронов, их ансамблей и нейронных систем мозга. Од­новременно устанавливаются новые и исчёзают старые меж­нейрональные связи.

Органы чувств

Анализаторы – сложные структурно-функциональные системы, связывающие ЦНС с внешней и внутренней средой. Они образованы афферентной частью рефлекторных дуг и состоят из трёх частей: периферической, где происходит восприятие раздражения (органы чувств), промежуточной – проводящие пути, и центральной – специальные зоны коры больших полушарий, где происходит анализ раздражений и формирование ощущений. Поэтому все органы чувств можно рассматривать как периферические части соответствующих анализаторов.

Классификация органов чувств осуществляется по рецепторным клеткам, которые в них находятся.

1). К первому типу относятся орган зрения и орган обо­няния. Их рецепторные клетки – первичночувствующие. Это нейросенсорные эпителиоциты, которые являются спе­циализированными нейронами и развиваются из нервной пластинки.

2). Ко второму типу относятся орган слуха и равновесия и орган вкуса. Их рецепторные клетки – это специализированные эпителиальные клетки, происходящие из эктодермы – вторичночувствующие, или сенсорные эпителиоциты.

3). Третий тип не имеет органного строения. Это совокупность разбросанных по организму инкапсулированных и неинкапсулированных рецепторов. Они образованы ветвле­ниями дендритов чувствительных нейронов, окруженных глиальными клеткам, а иногда и соединительнотканной кап­сулой. К нему относится орган осязания.

Рецепторные клетки имеют специализированные орга­неллы: реснички, стереоцилии, киноцилии, микроворсинки, которые содержат фото-, хемо- или механорецепторы, вос­принимающие соответствующие раздражения.

Орган обоняния

Является периферической частью обонятельного анализатора. Различают основной орган обоняния, представлен­ный обонятельной областью слизистой оболочки носа, и во­меронозальный (якобсонов) орган. Последний имеет вид парных эпителиальных трубок, замкнутых с одного конца и открывающихся в полость носа другим, расположенных в толще перегородки носа, на границе между хрящом перего­родки и сошником. Функции вомероноазальной системы свя­заны с функциями половых органов и эмоциональной сфе­рой.

Орган обоняния образован обонятельным эпителием. В его состав входят три типа клеток: обонятельные, под­держивающин и базальные, лежащие на базальной мембране. Обонятельные клетки являются хемосенсорными нейро­нами. На апикальном конце они имеют булавовидное утол­щение (булавы) с антенами – ресничками, которые посто­янно движутся. В них находятся хеморецепторы. Они взаи­модействуют с пахучими веществами. При этом меняется проницаемость мембраны клеток для ионов и возникает нервный импульс, который передаётся по аксонам нейронов в составе обонятельного нерва в мозг. У человека насчитыват до 6 млн. обонятельных клеток, а у собаки, которая от­личается хорошо развитым обонянием, число этих клеток в 50 раз больше. Поддерживающие клетки располагаются в несколько рядов, они поддерживают обонятельные клетки в определённом положении и создают условия для их нор­мальной деятельности. Базальные клетки, размножаясь, служат источником образования новых поддерживающих и рецепторных клеток (рис. 10-1).

Под обонятельным эпителием в рыхлой соединительной ткани лежат альвеолярно-трубчатые обонятельные железы, выделяющие слизистый секрет, омывающий поверхность обонятельного эпителия. В нём растворяются пахучие веще­ства для лучшего взаимодействия с хеморецепторами. В концевых отделах этих желез, снаружи от секреторных кле­ток, лежат миоэпителиальные клетки. При их сокращении секрет желез выделяется на поверхность слизистой оболочки.

Обонятельный анализатор состоит из трёх частей: пе­риферической (орган обоняния), промежуточной и централь­ной (обонятельная кора мозга). В периферической части рас­положены обонятельные, хемосенсорные клетки (первые нейроны). Их базальные отростки образуют обонятельные нервы, заканчивающиеся синапсами в виде клубочков на дендритах митральных клеток (вторые нейроны), располо­женных в обонятельных луковицах головного мозга. Их ак­соны идут в обонятельную кору мозга, где расположены третьи нейроны, которые относятся к центральной части обонятельного анализатора.

Рис. 10-1. Строе­ние обонятель­ного эпителия.

I. Обонятельный эпителий.

II. Собственная пластинка слизи­стой оболочки.

1. Обонятельные клетки.

2. Перифериче­ские отростки (дендриты).

3. Обонятельные булавы.

4. Центральные отростки (аксоны).

5. Обонятельные реснички.

7. Поддерживающие эпителиоциты.

8. Базальные эпителиоциты.

9. Базальная мембрана.

10. Нерв­ные стволики-аксоны обонятельных клеток.

11. Обонятельная железа. (По Я. В. Винникову, Л. Т. Титовой).

Психологический словарь . И.М. Кондаков . 2000 .

Большой психологический словарь. — М.: Прайм-ЕВРОЗНАК . Под ред. Б.Г. Мещерякова, акад. В.П. Зинченко . 2003 .

Пластичность Нервной Системы — способность к функциональным мозговым перестройкам в ответ на действие значимых внешних и внутренних факторов. Особенной пластичностью нервные структуры обладают в раннем онтогенезе, за счет чего возможна существенная перестройка их структуры и… … Психологический словарь

Пластичность (в физиологии) — Пластичность в физиологии, способность клеток и органов животных и растений менять в известных пределах свои свойства в зависимости от условий их функционирования. Так, говорят о П. центральной нервной системы, проявляющейся, например, в её… … Большая советская энциклопедия

Пластичность — I Пластичность (от греч. plastikós годный для лепки, податливый, пластичный) свойство твёрдых тел необратимо изменять свои размеры и форму (т. е. пластически деформироваться) под действием механических нагрузок. П. кристаллических тел… … Большая советская энциклопедия

Читайте также:  Дерматит на нервной почве

Адаптация физиологическая — совокупность физиологических реакций, лежащая в основе приспособления организма к изменению окружающих условий и направленная к сохранению относительного постоянства его внутренней среды Гомеостаза. В результате А. ф. повышается… … Большая советская энциклопедия

Мозжечок — Препарат мозга человека, красным выделен мозжечок … Википедия

НЕРВНАЯ СИСТЕМА — НЕРВНАЯ СИСТЕМА. Содержание: I. Эмбриогенез, гистогенез и филогенез Н.с. . 518 II. Анатомия Н. с. 524 III. Физиология Н. с. 525 IV. Патология Н.с. 54? I. Эмбриогенез, гистогенез и филогенез Н. е.… … Большая медицинская энциклопедия

Реелин — << >> Рилин Обозначения Symbol(s) RELN REELIN Entrez … Википедия

Опросник формально-динамических свойств индивидуальности человека — (ОФДСИ). В. М. Русалов. Опросник дальнейшее развитие опросника структуры темперамента (ОСТ). Он предназначен для науч. и прикладных исследований в области психологии, педагогики и медицины; обладает высокой надежностью и валидностью, в т. ч.… … Психология общения. Энциклопедический словарь

Рилин — Обозначения Символы … Википедия

Кора головного мозга — Центральная нервная система (ЦНС) I. Шейные нервы. II. Грудные нервы. III. Поясничные нервы. IV. Крестцовые нервы. V. Копчиковые нервы. / 1. Головной мозг. 2. Промежуточный мозг. 3. Средний мозг. 4. Мост. 5. Мозжечок. 6. Продолговатый мозг. 7.… … Википедия

биологические науки

  • Ланская Ольга Владимировна , доктор наук, доцент, профессор
  • Великолукская государственная академия физической культуры и спорта
  • КОНЦЕПЦИЯ НЕЙРОПЛАСТИЧНОСТИ
  • ПЛАСТИЧНОСТЬ НЕЙРОМЫШЕЧНОЙ СИСТЕМЫ

Похожие материалы

Возможности проявления разнообразных адаптивных реакций и поддержания уровня оптимального функционирования организма в немалой степени определяются состоянием центральной и периферической нервной системы, активностью скелетных мышц, резервами их энергетического обеспечения (И.Б. Козловская, 1976; Б.С. Шенкман с соавт., 2010).

Пластичность – важнейшее свойство нервной системы наряду с достаточной устойчивостью ее морфологической и функциональной организации (Ю.Г. Васильев, Д.С. Берестов, 2011). Существуют различные определения пластичности нервной системы. В словаре физиологических терминов под общей редакцией академика О.Г. Газенко (1987) пластичность применительно к ЦНС интерпретируется как способность нервных элементов к перестройке функциональных свойств под влиянием длительных внешних воздействий или при очаговых повреждениях нервной ткани. Посттравматическая пластичность выполняет компенсаторную (восстановительную) функцию, а пластичность, вызванная длительным афферентным раздражением, — приспособительную. Под пластичностью также понимается изменение эффективности или направленности связей между нервными клетками (П.Г. Костюк, 1981). Благодаря пластическим перестройкам межнейронных связей возникают микро- и макроструктурные объединения, системная (взаимосвязанная) деятельность которых лежит в основе врожденных и приобретенных форм целенаправленного поведения. Отмечается, что пластичность может проявляться как на уровне отдельной клетки, так и на уровне интегративной нервной деятельности.

В свою очередь, Merriam-Webster’s Medical Dictionary определяет пластичность, как способность к продолжительной альтерации невральных путей и синапсов при жизни мозга и нервной системы в ответ на опыт или повреждение (http://medical.merriam-webster.com/) (J.R. Wolpaw, A.M.Tennissen, 2001). Вместе с тем, Е.И. Гусев, П.Р. Камчатнов (2004) в своей работе интерпретируют пластичность как способность нервной ткани изменять структурно-функциональную организацию под влиянием экзогенных и эндогенных факторов. Именно это качество обеспечивает ее адаптацию и эффективную деятельность в условиях изменяющейся внешней и внутренней среды. Структурная пластичность относится к способности нервной системы изменять свою физическую структуру под влиянием обучения или повреждения. Например, аксональный и дендритный спраутинг, генезис нервной ткани, синаптогенез и другое на фоне реабилитационных вмешательств при повреждении в спинном мозге (V.R. Edgerton et al., 2004). Современный этап развития нейробиологии характеризуется усилением внимания и к вопросу о функциональной пластичности, которая является основой памяти, обучения, формирования новых рефлексов и функциональных систем, а также способствует восстановлению функции нервной системы после повреждения (E. Kandel et al., 1991; Г.Н. Крыжановский, 2001). Так, например, правильно организованная реабилитационная терапия после спинномозгового повреждения способствует нормализации рефлексов, усилению двигательных вызванных потенциалов и в целом восстановлению чувствительных, двигательных или автономных функций (V.R. Edgerton et al., 2004).

Пластичность участвует в возникновении и закреплении как биологически полезных, так и патологических изменений, то есть по своей биологической сущности различают физиологическую (полезную) и патологическую пластичность. Физиологическая пластичность проявляется адекватным реагированием на действие раздражителей, способствует закреплению в памяти возникающих изменений, необходимых для развития нервной системы. Патологическая пластичность проявляется в том, что при включении механизмов нейропластичности, например, при повреждении мозга возникают новые, иногда ошибочные межнейрональные связи, которые отсутствовали в норме. Они нередко усугубляют имеющиеся церебральные расстройства или способствуют возникновению новых нарушений. Постепенно под влиянием патологической пластичности повышается активность деятельности патологических функциональных систем, они становятся резистентными к различным, в том числе, медикаментозным воздействиям. Патологическая пластичность способствует возникновению генераторов патологического возбуждения.

Пластичностью обладают все нервные клетки, но наиболее высокий потенциал нейропластичности имеет кора головного мозга в связи с локализацией в ней различных в функциональном отношении клеток и наличием многочисленных их связей. Так, например, рядом авторов показаны различные примеры пластичности моторной коры у развивающихся (D.D. O’Leary, N.L. Ruff, R.H. Dyck, 1994) и взрослых животных (P.M. Rossini, F. Pauri, 2000). В экспериментальных работах на человеке, несмотря на трудности в интерпретации полученных данных, пластичность моторной коры показана рядом исследователей (E.M. Bütefisch et al., 2000; Е.В. Дамянович, Т.В. Орлова, 2004). Таким образом, корковая нейрональная пластичность является одним из основных источников компенсаторных изменений в системе моторного контроля как у развивающихся и взрослых животных, так и человека (А.Б. Вольнова, 2003). В то же время существенна роль и других отделов головного мозга — таламуса, ствола, ретикулярной формации, лимбической системы, а также глиальных структур. Любые регулирующие церебральные воздействия на деятельность органов и тканей возможны благодаря нейропластичности. Она регулирует лабильность, гомеостаз, нейротрофику, обмен веществ и различные приспособительные реакции организма (A. Sarkar et al., 2011).

Читайте также:  Невротик симптомы и признаки

Изучение функциональной пластичности макромодуля двигательной системы — мышцы, степени её вовлечённости в процесс, сохранности иннервации или определение объёма реиннервации, являются по существу основными вопросами, решаемыми при проведении электронейромиографических (ЭНМГ) исследований. Пластичность — одно из важнейших свойств скелетной мышцы. Оно позволяет мышечной ткани адаптироваться к изменению условий функционирования, воздействующих как на мышцу, так и на организм в целом. Важную роль в реализации феномена мышечной пластичности занимает регуляция размеров мышечных волокон на системном и местном уровне. При этом изменения показателей размеров волокон скелетных мышц, таких как площадь поперечного сечения (например, при силовой тренировке или гравитационной разгрузке) влечет за собой существенные изменения сократительных возможностей целой мышцы (А.И. Григорьев, Б.С. Шенкман, 2008).

Подводя некоторый итог вышеизложенных сведений, можно резюмировать: исследования отечественных и зарубежных специалистов в области генетики, цитологии, биохимии, клеточной биологии, нейрофизиологии, медицины и других смежных наук свидетельствуют о том, что под влиянием внешних и внутренних воздействий осуществляется реализация механизмов функциональной пластичности (от субклеточного до системного), в том числе, в нервной и нервно-мышечной системах, которые обладают высокими приспособительными возможностями, позволяющими эффективно функционировать в различных условиях.

Далее коснемся вопроса о классических и современных взглядах на концепцию нейропластичности. Нервная система играет важнейшую роль в процессе взаимодействия между живыми организмами и средой их обитания. В основе такого взаимодействия лежит способность нервной системы приобретать, хранить и воспроизводить информацию о прошлом опыте. Нервная система рассматривается как ведущая интегрирующая система организма, обеспечивающая высшие психические функции: сознание, память, мышление и регулирующая функциональный статус органов и систем. Эти и другие возможности обеспечиваются благодаря такому свойству нервной системы как пластичность.

Обычно, в ходе рассмотрения морфо-функциональной организации ЦНС оперируют следующими уровнями (Ю.Г. Васильев, Д.С. Берестов, 2011): минимальной структурно-функциональной единицей рассматривают нейрон, группы нервных клеток, в свою очередь, кооперируются в нейронные ансамбли, совокупность которых образует нервный центр. Функция нервных центров определяется морфологической и функциональной специализацией нейронов. Важную роль играют межнейронные взаимодействия, осуществляемые с помощью специальных контактов – синапсов, и способность нервных клеток формировать различные нейронные ансамбли.

Нейроглия (глия, глиоциты), в свою очередь, представляет собой полиморфное и гетерогенное по составу семейство клеток, которые искусственно объединены по признаку вспомогательной функции по отношению к нейронам. Глиоциты, или глиальные клетки, формируют весьма сложное и крайне важное микроокружение для нейронов, без которого собственно специфическая деятельность ведущей популяции клеток нервной ткани весьма затруднительна, если вообще возможна (Ю.Г. Васильев, Д.С. Берестов, 2011). Нейроглия формирует соответствующие условия для формирования потенциала действия и его последующей передачи на значительное удаление, контролирует процессы трофического обеспечения. В ЦНС выделяют макроглию (к ней относятся различные разновидности астроцитов; олигодендроциты, которые связывают как с белым, так и с серым веществом мозга, но большее их представительство наблюдается в зоне локализации нервных волокон, по функции и положению они более близки к леммоцитам периферической нервной системы), микроглию (глиальные макрофаги, образуется из моноцитов крови) и эпендимную глию (выстилает канал спинного мозга, полости желудочков головного мозга). В периферической нервной системе выделяют шванновские клетки и сателлитную глию периферических нервных ганглиев.

Рассмотрим развитие концепции нейропластичности. В разработке основных положений нейронной теории принимали участие А.С. Догель, С. Рамон-и-Кахаль, Б.И. Лаврентьев. Согласно классическим представлениям, нейроны составляют цепи и сети, в которых осуществляется обработка информации и обеспечиваются ответы, в том числе, определяющие поведение животного и человека. Каждый нейрон, наряду с обычными для всех клеток свойствами, обладает не только способностью к переработке, но и передаче информации к другим клеткам посредством отростков и синапсов. Стоит подчеркнуть, что современные концептуальные сведения касательно информации о нервной системе привнесли много нового к имеющимся классическим представлениям в этой области. Уже в 80-е годы XX века в нейроне, наряду с единственным вариантом входа и выхода информации через химические синапсы, обнаруживаются и иные способы ее передачи – щелевидные контакты. Предложено считать элементарной пространственной единицей не отдельную клетку, а ансамбль связанных между собой нейронов. В связи с этим возрастало осознание роли не только нейронов, но и прилежащего глиального и сосудистого окружения. Современные данные позволяют расширить это представление, указывая на возможность внесинаптических взаимодействий. Такое влияние оказывается не только на низкомолекулярные органические и неорганические монометры, но и на часть полимерных образований, с включением в систему узких межклеточных пространств как путей распространения веществ и весьма значимого элемента контроля нейронной активности. Таким образом, при изучении особенностей клеточных механизмов пластичности различных областей мозга необходимо учитывать не только нейронную организацию, но и все окружение, осуществляющее поддержание гомеостаза и способное существенно изменять функцию.

Данное предположение подкрепляется несколькими положениями, выдвинутыми Ч. Шеррингтоном (1969). Им были выявлены некоторые интересные закономерности функционирования нервной системы. В частности он указывал на более значительную изменчивость пороговых величин раздражения в рефлекторных дугах по сравнению с нервными стволами. Это, согласно современным представлениям, может быть связано с динамикой в синаптической передаче или с модуляцией сигнала, обусловленной влияниями ближайшего глиального окружения, а также перераспределением ионного содержимого межклеточного вещества при длительном возбуждении как самих активируемых, так и прилежащих к ним нейронов. Другое положение, выдвинутое Ч. Шеррингтоном, указывает на большую зависимость от кровообращения и снабжения кислородом в нейронных системах по сравнению с передачей сигнала в отдельном нервном волокне. Этот факт может заключать в себе как известную зависимость нервных клеток от поступления нутриентов (в первую очередь глюкозы), так и тривиальную информацию, касающуюся, например, прямой зависимости нейрона от уровня обеспечения процессов аэробного фосфорилирования.

Читайте также:  Что можно попить для успокоения нервной системы

Следует также отметить, что с 70-80-х гг. прошлого века накопившиеся экспериментальные данные поставили под сомнение достаточность классических представлений нейронной теории С. Рамон-и-Кахаля в объяснении механизмов функционирования мозга. Концепция о нейроне как о поляризованной единице, связанной с аналогичными единицами с помощью тесно пространственно расположенных синапсов, потребовала существенного пересмотра. Так, была показана структурная и функциональная гетероморфность самих нейронов. Несколько позднее были выявлены факты о возможности пространственно удаленных межнейронных взаимодействий, которые, являясь более медленными по скорости связей и, в основном, менее интенсивными, тем не менее, способны носить весьма устойчивый характер. Данные взаимодействия, как показано в исследованиях конца XX — начала XXI в., могут опосредоваться как через межклеточное пространство, так и с помощью клеток-посредников. Наиболее интенсивно в качестве такого посредника в ЦНС позвоночных изучаются астроциты, но немаловажная роль отводится и иным клеточным структурам ЦНС и нервной периферии.

Одним из интенсивно исследуемых направлений в современной нейробиологии является проблема пластичности ЦНС при ее повреждениях. Пластичность ЦНС включает процессы различных уровней функционирования и временной протяженности, по-разному проявляющиеся при центральном и периферическом поражении нервной системы. О пластичности, как важном свойстве живого организма, много писали крупнейшие представители биологии и медицины – И.М. Сеченов, А.Н. Северцов, И.П. Павлов, Ч.С. Шеррингтон, Ф.Л. Гольц, А. Бете, Р. Магнус, Л.А. Орбели, В.М. Бехтерев, Э.А. Асратян, П.К. Анохин и др. В течение многих лет накоплен разнообразный материал о процессах восстановления функций после различного рода повреждений, но общей теории пластичности до тридцатых годов прошлого столетия создано не было.

В нейрофизиологии значительные шаги в этом направлении были сделаны А. Бете в 30-ых годах прошлого столетия. Исходя из своих экспериментальных данных и клинических наблюдений, а также данных некоторых других исследователей, он предложил общую теорию пластичности, в соответствии с которой решающая роль в компенсации функций принадлежит не ЦНС, а периферическим импульсам и периферическим рецепторам. Понимая принципиальную ошибочность теории Бете, Э.А. Асратян, основываясь на своих собственных данных, а также достижениях других представителей передовой мировой нейрофизиологии, выдвинул концепцию, согласно которой у высших животных в процессе восстановления функций, нарушенных после повреждения различных отделов ЦНС и периферической нервной системы, решающая роль принадлежит коре больших полушарий головного мозга, и что пластичность является одним из важных свойств этого отдела нервной системы.

На основании проведенных к настоящему времени исследований предполагалось, что возможные механизмы пластичности поврежденной ЦНС можно разделить на две группы. К первой группе относятся: функциональная перестройка, преобразование запасных путей, повышение активности синапсов и вовлечение нервных связей, которые в норме не функционируют. Этот механизм чисто функциональный и в нем решающая роль отводится коре больших полушарий. Он основан на ее условнорефлекторной деятельности и таких явлениях как рекрутирование, вовлечение новых единиц, облегчение, усиление и т.д. Ко второй группе относятся: органические, структурные или вегетативные изменения, в число которых входят регенерация, гипертрофия нервных клеток, образование новых коллатералей от интактных аксонов, которые дают аксосоматические или аксодендритические контакты с частично деафферентированными нейронами, так называемое явление аксонального спраутинга и т.д., которые связаны с обменом веществ и обусловлены химическими механизмами. И та, и другая точки зрения не противоречат современной концепции нейропластичности, в частности, положению о том, что при поражении мозга возникающие симптомы нейродефицита отражают не проявления поврежденной области мозга, а функцию всего мозга, точнее, пластические изменения в оставшейся функционирующей части мозга, в числе которых могут быть и те, которые блокируют восстановление функции.

Изменения, выявляющие пластичность мозга, происходят на молекулярном, клеточном, синаптическом и анатомическом (охватывая значительные группы нейронов – нейронные ансамбли) уровнях. При этом могут быть вовлечены не только корковые отделы, но и подкорковые структуры. Кроме того, помимо структурных изменений отмечаются и динамические, последовательно сменяющие друг друга сдвиги функционального характера, как в окружающей очаг повреждения зоне, так и на расстоянии от этого очага. Процессы, связанные с нейропластичностью, могут носить как системный, так и локальный характер.

Изложенные сведения указывают, что в соответствии с современными представлениями нейрон, являясь ведущим исполнителем основных функций нервной системы, не является независимым элементом. Он весьма подвержен влиянию как клеток этой же популяции, так и прилежащего окружения. В то же время нейроны весьма разнообразны как по структурной, так и функциональной организации. Через описание и даже подробнейшее рассмотрение отдельного нейрона невозможно описать функцию всей системы в целом. Значима роль не только отдельного нейрона, но и взаимодействующей системы из нейронных ансамблей, неоднородных по качественной и количественной природе. Определенный интерес в этом отношении вызывает специализированная система межнейронных коммуникаций в виде синаптических контактов, что и будет рассмотрено в следующих работах.

Список литературы

Электронное периодическое издание зарегистрировано в Федеральной службе по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), свидетельство о регистрации СМИ — ЭЛ № ФС77-41429 от 23.07.2010 г.

Соучредители СМИ: Долганов А.А., Майоров Е.В.

Читайте также:
Adblock
detector