Передача информации от одной нервной клетки к другой происходит через

Главная функция аксонов — передавать информацию от клеточного тела и дендритов нейрона к синапсамна других нейронах или эффекторных клетках. Передача информации обычно происходит в виде последовательностей нервных импульсов.

Скорость проведения по аксону определяется тем, насколько быстро распространяется потенциал действия. Она зависит от диаметра аксона, а также от наличия миелиновой оболочки. Немиелинизированные аксоны обычно имеют диаметр менее 1 мкм и скорость проведения ниже 2,5 м/с. Сигнал, возникший в рецепторе стопы человека и распространяющийся по немиелинизированному аксону со скоростью 1 м/с, дистигает спинного мозга примерно через 1 с. У миелинизированных аксонов диаметр от 1 до 20 мкм, а скорость проведения 3-120 м/с. Мотонейрон спинного мозга, аксон которого проводит сигналы со скоростью 100 м/с, вызовет сокращение мышцы пальца стопы примерно через 10 мс.

Аксоны есть не у всех нейронов. Так, амакриновые клетки сетчатки — нейроны ЦНС, лишенные аксонов, передают информацию к синаптическим окончаниям с помощью внутриклеточного электрического тока без генерирования потенциалов действия. В результате возникает местный потенциал , который распространяется по нейрону лишь на короткое расстояние — от нескольких миллиметров до нескольких сотен микронов в зависимости от константы длины. Он отличается от потенциала действия тем, что не способен к проведению, тогда как последний может распространяться по аксонам на большие расстояния.

Сигнализация посредством местных потенциалов характерна также для сенсорных рецепторов (они производят рецепторные потенциалы) и для процессов коммуникации между нервными клетками, генерирующими синаптические потенциалы.

У млекопитающих нервные импульсы между клетками обычно передаются через химические синапсы . В синапсах этого типа при поступлении потенциала действия к окончанию аксона освобождается химическое вещество, которое вызывает возбуждение или торможение в мембране соседней клетки.

Электрические синапсы встречаются относительно редко; здесь потенциал действия вызывает возбуждение или торможение в соседней клетке без вмешательства процесса химической передачи.

Синапсы играют решающую роль в функции мозга и участвуют в таких функциях, как учение и память .

Физиология мышечной ткани

Перемещение тела в пространстве, поддержание определенной позы, работа сердца и сосудов и пищеварительного тракта у человека и позвоночных животных осуществляются мышцами двух основных типов: поперечнополосатыми (скелетной, сердечной) и гладкими, которые отличаются друг от друга клеточной и тканевой организацией, иннервацией и в определенной степени механизмами функционирования. В то же время в молекулярных механизмах мышечного сокращения между этими типами мышц есть много общего.

Классификация скелетных мышечных волокон

Скелетная мускулатура человека и позвоночных животных со­стоит из мышечных волокон нескольких типов, отличающихся друг от друга структурно-функциональными характеристиками. В настоящее время выделяют четыре основных типа мышечных волокон.

Медленные фазические волокна окислительного типа. Волокна этого типа характеризуются большим содержанием белка миоглобина, который способен связывать О2 (близок по своим свойствам к гемоглобину). Мышцы, которые преимущественно состоят из во­локон этого типа, за их темно-красный цвет называют красными. Они выполняют очень важную функцию поддержания позы человека и животных. Предельное утомление у волокон данного типа и, следовательно, мышц наступает очень медленно, что обусловлено наличием миоглобина и большого числа митохондрий. Восстанов­ление функции после утомления происходит быстро. Нейромоторные единицы этих мышц состоят из большого числа мышечных волокон.

Быстрые фазические волокна окислительного типа. Мышцы, которые преимущественно состоят из волокон этого типа, выполняют быстрые сокращения без заметного утомления, что объясняется боль­шим количеством митохондрий в этих волокнах и способностью образовывать АТФ путем окислительного фосфорилирования. Как правило, число волокон, входящих в состав нейромоторной единицы, в этих мышцах меньше, чем в предыдущей группе. Основное на­значение мышечных волокон данного типа заключается в выпол­нении быстрых, энергичных движении.

Быстрые фазические волокна с гликолитическим типом окис­ления. Волокна данного типа характеризуются тем, что АТФ в них образуется за счет гликолиза. Волокна этой группы содержат ми­тохондрий меньше, чем волокна предыдущей группы. Мышцы, со­держащие эти волокна, развивают быстрое и сильное сокращение, но сравнительно быстро утомляются. Миоглобин в данной группе мышечных волокон отсутствует, вследствие чего мышцы, состоящие из волокон этого типа, называют белыми.

Для мышечных волокон всех перечисленных групп характерно наличие одной, в крайнем случае нескольких концевых пластинок, образованных одним двигательным аксоном.

Между структурой и функцией мышечных волокон существует тесная связь. Показано, что быстрые фазические волокна имеют вы­соко развитую саркоплазматическую сеть и обширную сеть Т-системы, в то же время медленные волокна имеют менее развитые саркоп­лазматическую сеть и сеть Т-системы. Кроме того, существует разли­чие в активности кальциевых насосов саркоплазматической сети: в быстрых волокнах она значительно выше, что позволяет этим мышеч­ным волокнам быстро расслабляться. Большинство скелетных мышц человека состоит из мышечных волокон различных типов с преобла­данием одного из типов в зависимости от функций, которые выполня­ет та или иная мышцы.

Читайте также:  По потолку гуляю я и нервно нюхаю томаты

Мышечные волокна не являются функциональной единицей ске­летной мускулатуры. Эту роль выполняет нейромоторная, или двигательная, единица, которая включает мотонейрон и группу мышечных волокон, иннервируемых разветвлениями аксона этого мотонейрона, расположенного в ЦНС. Число мышечных волокон, входящих в состав двигательной единицы, различно (табл. 2.5) и зависит от функции, которую выполняет мышца в целом.

В мышцах, обеспечивающих наиболее точные и быстрые движения, двигательная единица состоит из нескольких мышечных воло­кон, в то время как в мышцах, участвующих в поддержании позы, двигательные единицы включают несколько сотен и даже тысяч мышечных волокон.

Величина потенциала покоя мышечных волокон составляет при­мерно — 90 мВ, потенциала действия — 120—130 мВ. Длительность потенциала действия 1—3 мс, величина критического потенциала — 50 мВ.

Информация передается между нейронами подобно электрическому току в проводах. Эти сообщения закодированы: они представляют собой последовательность совершенно одинаковых импульсов. Сам код кроется в их частоте, то есть в числе импульсов в секунду. Импульсы передаются от клетки к клетке, от дендрита, в котором они возникают, к аксону, через который они проходят. Но есть и отличие от электрических сетей – импульсы передаются не при помощи электронов*, а при помощи более сложных частиц – ионов.

Существует множество химических препаратов, способных изменить характеристики передачи нервных импульсов. Как правило, они действуют на синаптическом уровне. Анестетики и транквилизаторы замедляют, а иногда и вообще подавляют передачу импульсов. А антидепрессанты и стимуляторы, такие как кофеин, наоборот способствуют лучшей их передаче.

Нервные импульсы должны быстро проходить по телу. Ускорить их прохождение нейронам помогают окружающие их глиальные клетки. Они образуют оболочку нервного волокна, называемую миелиновой. В результате импульсы идут с умопомрачительной скоростью – более 400 км/час.

Передаваемые от нейрона к нейрону сообщения должны превращаться из электрической в химическую форму. Это связано с тем, что, несмотря на свою многочисленность, нейроны никогда не соприкасаются между собой. Но электрические импульсы не могут передаваться, если нет физического контакта. Поэтому нейроны используют для связи между собой специальную систему, называемую синапсами. В этих местах нейроны разделены узким пространством синаптической щелью. Когда электрический импульс приходит к первому нейрону, он высвобождает из синапса химические молекулы, так называемые нейромедиаторы. Эти вещества, вырабатываемые нейронами, перемещаются через синаптическую щель и попадают на специально предназначенные для них рецепторы другого нейрона. В результате возникает еще один электрический импульс.

Импульс между нейронами проходит меньше, чем за тысячную секунды.

Мозгом вырабатывается около полусотни нейромедиаторов, которые можно подразделить на две группы. Первая состоит из тех, что инициируют возникновение нервного импульса, – их называют возбуждающими. Другие, напротив, замедляют его возникновение – это тормозящие нейромедиаторы. Стоит отметить, что в большинстве случаев нейрон выделяет только один тип нейромедиаторов. И в зависимости оттого, является ли он возбуждающим или тормозящим, нейрон по-разному воздействует на соседние нервные клетки.

Отдельный нейрон или группу нейронов возможно стимулировать искусственно при помощи введенных в них электродов, направляющих электрические импульсы в точно обозначенные зоны мозга. Этот метод иногда используют в медицине, в частности для лечения больных страдающих болезнью Паркинсона Эта проявляющаяся в пожилом возрасте болезнь сопровождается дрожанием конечностей. Это дрожание может быть остановлено путем постоянной стимуляции конкретной зоны мозга.

Во всем этом хитросплетении нейронов существуют прекрасно обозначенные пути. Схожие идеи, схожие воспоминания проходят, приводя всегда в действие одни и те же нейроны и синапсы. До сих пор неизвестно, как возникают и поддерживаются эти, подобные контурам электронных схем связи, но очевидно, что они существуют и что, чем они прочнее,тем они эффективнее. Часто используемые синапсы работают быстрее. Этим и объясняется то, почему мы быстрее вспоминаем вещи, которые мы видели или повторяли несколько раз. Однако эти связи возникают не навсегда. Некоторые из них могут исчезнуть, если их недостаточно использовали, а на их месте возникнуть новые. При необходимости нейроны всегда способны создавать новые связи.

Маленькие зеленые точки на фото — гормоны внутри кровеносных сосудов

Когда говорят, что спортсмен использовал гормональный допинг, это значит, что он принимал гормоны либо в виде таблеток, либо вводя их непосредственно в кровь. Гормоны бывают естественными или искусственными. Самые распространенные – гормоны роста и стероиды, за счет которых мышцы становятся больше и сильнее, а также эритропоэтин – гормон, ускоряющий доставку питательных веществ к мышцам.

Мозг способен производить миллионы операций за доли секунды.

Для обмена информацией мозгом используется и другой инструмент – гормоны. Эти химические соединения частично производятся самим мозгом в группе нейронов, расположенных в гипоталамусе. Эти гормоны контролируют производство иных, вырабатываемых в других частях тела в эндокринных железах. Они действуют иначе, чем нейромедиаторы, которые фиксируются непосредственно на нейронах и переносятся с кровью к отдаленным от мозга органам тела, таким как груди, яичники, мужские семенники, почки. Закрепляясь на их рецепторах, гормоны вызывают различные физиологические реакции. Они, например, способствуют росту костей и мышц, управляют чувством голода и жажды и, конечно, влияют на сексуальную активность.

Читайте также:  Основные свойства нервной системы

Нейрон состоит из:

· тела – сомы,

· отростков, воспринимающих нервные импульсы и передающих их в сому – дендритов,

· отростков, несущих импульс от сомы и передающих ее на другие нейроны — аксонов.


Аксоны могут передавать информацию на другие нейроны и к эффекторным органам — тканям и органам организма, исполняющим конечное действие рефлекса.

Передача информации от одной нервной клетки к другой осуществляется посредством специальных приспособлений-синапсов, которыми оканчиваются аксоны. Причем передача идет химическим путем, с помощьюмедиаторов— специальных химических веществ, и только в одном направлении: от аксона другой нейрон (на его дендрит, сому или аксон).

Количество синапсов на соме и отростках одной нервной клети различно и колеблется от нескольких десятков до 15 000 — 20 000 штук. Количество отростков одной нервной клетки исчисляется десятками, сонями и тысячами. Таким образом, каждый нейрон в ЦНС связан напрямую с десятками, сотнями и тысячами других нейронов, через эти другие нейроны — с тысячами и миллионами нейронов, то есть с любым нейроном ЦНС. Этим обеспечивается теснейшее взаимодействие самых различных нервных структур, образование практически любого рефлекса на любой раздражитель.

В зависимости от расположения, синапсы играют разную роль:

· Аксодендрический синапс – оканчивается на дендрите другого нейрона — передает сигнал, не вызывающий возбуждения этой другой нервной клетки, но усиливающий другие импульсы приходящие на этот дендрит;

· Аксосоматический синапс – оканчивается на соме другого нейрона — передаетсигнал, всегда вызывающий возбуждение этой другой нервной клетки.

· Аксо – аксональный синапс — оканчивается на аксоне другого нейрона — передает сигнал, не вызывающий возбуждения другой нервной клетки, но усиливающий другие импульсы приходящие на этот аксон;

Кроме того, по своему воздействию, синапсы делятся на две категории: возбуждающие– передают сигнал возбуждения от одного нейрона к другому (или усиливающий уже проходящий там сигнал), тормозящие – вызывают торможение нервных импульсов в другом нейроне.

Процесс прохождения электрического импульса по нейронам называется возбуждением.Сигналы возбуждения представляют собойнепрерывную цепочкуэлектрических импульсов, проходящих по нейрону. Иначе говоря, возбуждение – это электрический ток разной частоты, проходящий по нервным клеткам.

Возбуждение, наряду с торможением – два самых главных процесса в ЦНС.Сигналы торможения также представляет собой импульсы электрического тока, проходящие по нейронам. Различия между торможением и возбуждением – только в синапсах: возбуждение проходящее по нейрону, который оканчивается тормозным синапсом на другом нейроне – есть тормозящий импульс. Тормозящий импульс блокирует возбуждение этого другого нейрона. Возбуждение, проходящее по нейрону, который оканчивается возбуждающим синапсом на другом нейроне – есть возбуждающий импульс.

Не всякое возбуждение, подходящее через возбуждающий синапс, вызывает возбуждение в другом нейроне. Для этого оно должно иметь достаточную частоту электрических импульсов — или силу нервного сигнала.

Нервный сигнал низкой (допороговой или подпороговой)силы вызывает местное возбуждение, распространяющееся на некоторое расстояние от синапса по аксону или дендриту, и быстро затухающее — местный потенциал.Возбуждения нейрона не происходит.

Нервный сигнал более высокой силы (но также допороговой) вызывает местный потенциал распространяющийся дальше, но тоже затухающий. И лишь достигнув определенной величины –порога возбуждения, местный потенциал превращается в волну возбуждения– электрический ток,распространяющуюся по всему нейрону.

Понятие порога возбуждения имеет большое значение для понимания поведенческих реакций человека. Изменением порога возбуждения нервных клеток, можно объяснить очень многое в поведении людей.

Каждая нервная клетка имеет свой порог возбуждения, отсюда высокая избирательность при формировании рефлекторных дуг.

Порог возбуждения может повышаться за счет деятельности находящихся на нейроне тормозных синапсов. Тормозные синапсы отличаются от возбуждающих синапсов тем, что их действие вызывает торможение, блокировку проходящих нервных сигналов или местных потенциалов.

Подходящие к этим синапсам нервные импульсы вызывают затухание местных потенциалов, и тем самым тормозят возникновение в нейроне волны возбуждения от действия возбуждающих синапсов. Или снижают силу импульсов проходящих сигналов возбуждения и, таким образом, блокируют прохождение сигнала. Торможение также обладает свойством суммации своего воздействия.

ВОЗБУЖДЕНИЕ и ТОРМОЖЕНИЕ – главные и единственные процессы, протекающие в ЦНС.

Явление суммации очень распространено в ЦНС. Чаще всего процесс возбуждения в нейроне возникает именно в результате суммации поступающих на этот нейрон нервных импульсов от разных нейронов разных участков ЦНС.

Благодаря большому количеству отростков и синапсов, каждая нервная клетка в головном мозге может образовывать нервные связи практически с любым нейроном ЦНС, оказывать на него или получать от него возбуждающее или тормозящее воздействие. Благодаря естественному отбору, за миллионы лет, эволюция создала структуру ЦНС, позволившую упорядочить эти процессы, проводить их целенаправленно, в рамкахрефлекторного механизма.

Читайте также:  Жидкость в голове у ребенка комментарий врача невролога причины

Человек появляется на свет с комплексом врожденных нервных связей – врожденных рефлексов, которые занимают лишь малую часть ЦНС. Вся оставшаяся часть ЦНС – это огромная чистая книга, в которую человек, создавая новые условные рефлексы, новые нервные связи, записывает всю свою жизнь, каждое событие, каждый миг.

Вся информация из внешней среды, окружающей человека, поступает через >сенсорную систему – органы чувств. У человека их пять: зрение, слух, осязание, обоняние, вкус. Информация воспринимается посредством рецепторов — специализированных нервных структур, или нервных окончаний нейронов, и передается дальше по нервным путям в виде сигналов возбуждения – импульсов слабого электрического тока. Причем, чем больше частота проходящих импульсов, тем сильнее сигнал, идущий по нервному пути.

Каждый рецептор имеет узкую специализацию – воспринимает только конкретные воздействия окружающей среды, строго определенной силы. В органах чувств рецепторы образуют рецепторные поля.

· Например: орган осязания – это вся поверхность тела человека, которое представляет собой сплошное рецепторное поле, на котором находятся рецепторы, воспринимающие соответственно: давление, температуру, боль.

· Рецепторы органов слуха реагируют на изменение давления воздуха и воспринимают звуковые колебания воздуха определенных частот.

· Рецепторы органов зрения воспринимают корпускулярное излучение, то есть: различные цвета, яркость света.

· Рецепторы органов обоняния воспринимают воздействие молекул газов.

· рецепторы органов вкуса специализируются на химических восприятиях остальных веществ.

Каждый рецептор воспринимает воздействия строго определенной силы. Например: рецепторы органов слуха воспринимают звуковые колебания воздуха в диапазоне от 20 до 18 000 Гц. Звуковые колебания воздуха ниже 20 Гц (инфразвук) и выше 18 000 Гц (ультразвук) рецепторами органов слуха не воспринимаются.

Минимальная сила воздействия, вызывающая возбуждение нервных клеток, называетсяпороговой. Сила воздействия ниже пороговой вызывает только местный потенциал действия (не вызывающий возбуждения), и называется подпороговой (допороговой).Сила воздействия выше пороговой называется надпороговой.

Слишком большая сила воздействия раздражителя на рецепторы также не вызывает возбуждения нервных клеток. Такое воздействие называется запредельным.

Вся информация от рецепторов поступает в головной мозг, где происходит ее переработка – анализ и синтез(обработка информации некоторых простейших рефлексов происходит в спинном мозге), с целью формирования адекватной реакции на поступившую информацию. Это главное в рефлекторной деятельности соматического ума.

Анализ поступающей информации осуществляется в сенсорных нервных центрах (сенсорных НЦ) – функциональных объединениях нейронов центральной нервной системы. Направление возбуждающего сигнала из сенсорного НЦ в НЦ врожденного рефлекса есть синтез информации – формирование ответа.

Затем сигнал идет по врожденным нервным путям — эффекторным нейронам — к НЦ мышц эффекторов, и, затем, к мышцам – эффекторам, которые и осуществляют действие – конечную цель рефлекса. Однако на этом рефлекторная деятельность не кончается. Для обеспечения надежности, эволюция создала систему контроля рефлексов – систему обратной связи: от органов исполнителей рефлекса (эффекторных органов) по нервным связям идет информация о выполнении или не выполнении конечной фазы рефлекса — в нервный центр данного рефлекса.

Таким образом, суть рефлекторной деятельности заключается в том, что соматический ум получает информацию о состоянии внешней среды и состоянии самого организма, формирует ответ, как реагировать на эту информацию, совершает соответствующее действие и получает ответ: совершено или нет это действие.

Обработка информации, формирование ответа происходит в нервных центрах – группой нейронов головного мозга, объединенных единой функцией. Нервные центры – это, в своем большинстве, не морфологические структуры, а именно функциональные объединения. Они образуются механизмом нервного замыкания и формирования нервного следа: в момент одновременного возбуждения нескольких участков головного мозга, между нейронами этих участков проходит нервный импульс, после прохождения которого, на этом нервном пути остается следовой эффект, облегчающий прохождение следующего сигнала по этому пути.

После каждого прохождения нервного импульса по этому пути след усиливается, а, значит, для прохождения каждого последующего сигнала требуется нервный импульс все меньшей и меньшей силы.

Существуют различные теории нервного следа. Скорее всего, изменения происходят в синапсах. Благодаря этим изменениям, уменьшается порог возбудимости нейрона, принимающего сигнал, и по нейрону начинает проходить сигнал, ранее подпороговой силы.

Это основные физиологические процессы, которые необходимо знать, чтобы понять суть описываемых далее явлений.

Читайте также:
Adblock
detector