Нервная и гуморальная регуляция дыхания

Какие механизмы регулируют дыхание?
Дыхательные центры продолговатого мозга и моста мозга.
Центральные и периферические хеморецепторы.
Рецепторы легких.
Дыхательные мышцы.

Внешнее дыхание — одна из важнейших функций организма. Остановка дыхания приводит верную смерть уже через 3-5 мин. Количество кислорода в организме незначительна, поэтому важно, чтобы он постоянно поступал через систему внешнего дыхания. Этим объясняется формирование в процессе эволюции такого механизма регуляции, который бы обеспечил высокую надежность дыхания. В основе регуляциГ дыхания лежит поддержка константного уровня-таких показателей организма, как Рсо8, Ро? и рН. Основным принципом регуляции е саморегуляция, при которой отклонение этих параметров от нормального уровня немедленно вызывает ряд процессов, направленных на их восстановление.
В системе регуляции дыхания можно выделить внутренние и внешние звенья саморегуляции. Внутренние звенья связаны с состоянием крови (буферные свойства, содержание гемоглобина) и сердечно-сосудистой системы, внешние — с механизмами внешнего дыхания. Изменяемыми параметрами системы регуляции внешнего дыхания является глубина и частота дыхательных движений.
Основным регулируемым объектом являются дыхательные мышцы, которые относятся к скелетных мышц. Кроме них, к объекту регуляции дыхания должны быть зачислены гладкие мышцы глотки, трахеи и бронхов, которые влияют на состояние дыхательных путей. Транспорт газов кровью и газообмен в тканях осуществляет сердечно-сосудистая система.

Ритмическая последовательность вдоха и выдоха, а также изменение характера дыхательных движений в зависимости от состояния организма регулируются дыхательным центром, расположенным в продолговатом мозге.

В дыхательном центре имеются две группы нейронов:инспираторные и экспираторные.При возбуждении инспираторных нейронов, обеспечивающих вдох, деятельность экспираторных нервных клеток заторможена, и наоборот.

В верхней части моста головного мозга (варолиев мост) находится пневмотаксический центр, который контролирует деятельность расположенных ниже центров вдоха и выдоха и обеспечивает правильное чередование циклов дыхательных движений.

Дыхательный центр, расположенный в продолговатом мозге, посылает импульсы к мотонейронам спинного мозга, иннервирующим дыхательные мышцы. Диафрагма иннервируется аксонами мотонейронов, расположенных на уровне III—IV шейных сегментов спинного мозга. Мотонейроны, отростки которых образуют межреберные нервы, иннервирующие межреберные мышцы, расположены в передних рогах (III—XII) грудных сегментов спинного мозга.

Важная роль в регуляции дыхания принадлежит коре больших полушарий. Дыхательный центр находится в состоянии постоянной активности: в нем ритмически возникают импульсы возбуждения. Эти импульсы возникают автоматически. Даже после полного выключения центростремительных путей. Идущих к дыхательному центру. В нем можно зарегистрировать ритмическую активность. Автоматизм дыхательного центра связывают с процессом обмена веществ в нем. Ритмические импульсы передаются из дыхательного центра по центробежным нейронам к дыхательным мышцам и диафрагме. Обеспечивая чередование вдоха и выдоха.Рефлекторнаярегуля ция. При болевом раздражении, при раздражении органов брюшной полости, рецепторов кровеносных сосудов. Кожи, рецепторов дыхательных путей изменение дыхания происходит рефлекторно. При вдыхании паров аммиака, например, раздражаются рецепторы слизистой оболочки носоглотки, что приводит к рефлекторной задержке дыхания. Это важное защитное приспособление, препятствующее попаданию в легкие ядовитых и раздражающих веществ. Особое значение в регуляции дыхания имеют импульсы, идущие от рецепторов дыхательных мышц и от рецепторов самих легких. От них в большей степени зависит глубина вдоха и выдоха. Это происходит так. При вдохе, когда легкие растягиваются, раздражаются рецепторы в их стенках. Импульсы от рецепторов легких по центростремительным волокнам блуждающего возбуждают центр выдоха. В результате дыхательные мышцы расслабляются, грудная клетка опускается, диафрагма принимает вид купола, объем грудной клетки уменьшается и происходит выдох. Выдох, в свою очередь, рефлекторно стимулирует вдох. В регуляции дыхания принимает участие кора головного мозга, обеспечивающая тончайшее приспособление дыхания к потребностям организма в связи с изменениями условий внешней среды и жизнедеятельности организма. Вот примеры влияния коры больших полушарий на дыхание. Человек может на время задержать дыхание, по своему желанию изменить ритм и глубину дыхательных движений. Влияниями коры головного мозга объясняются предстартовые изменения дыхания у спортсменов — значительное углубление и учащение дыхания перед началом соревнования. Возможна выработка условных дыхательных рефлексов. Если к вдыхаемому воздуху добавить 5-7% углекислого газа, который в такой концентрации учащает дыхание, сопровождать вдох стуком метронома или звонком, то через несколько сочетаний один только звонок или стук метронома вызовет учащение дыхания. Гуморальные влияниянадыхательный центр. Большое влияние на состояние дыхательного центра оказывает химический состав крови, в частности ее газовый состав. Накопление углекислого газа в крови вызывает раздражение рецепторов в кровеносных сосудах, несущих кровь к голове, и рефлекторно возбуждает дыхательный центр, подобным образом действуют и другие кислые продукты. Поступающие в кровь, например молочная кислота, содержание которой в крови увеличивается во время мышечной работы.

под влиянием гипоксии включаются компенсаторные физиологические механизмы. Первым их звеном является рефлекторное увеличение легочной вентиляции, обусловленное стимуляцией хеморецепторов синокаротидной и отчасти аортальной зон. Одновременно возрастают частота сердечных сокращений и минутный объем крови. В результате утилизация кислорода при сниженном его парциальном давлении в атмосфере осуществляется за счет уменьшения диффузионных градиентов в газотранспортной системе (рис. 10.43).

Зато при длительном проживании в условиях высокогорья возрастает жизненная емкость легких, повышается кислородная емкость крови (за счет увеличения числа эритроцитов и содержания гемоглобина, в том числе фетального, обладающего более высоким сродством к O2), в мышцах становится больше миоглобина, в митохондриях усиливается активность ферментов, обеспечивающих биологическое окисление и гликолиз.

Избыток СО2 и недостаток О2 во вдыхаемом воздухе вызывает увеличение объемной скорости дыхания, благодаря чему парциальное давление О2 и СО2 в артериальной крови почти не изменяется.

Функции пищеварительного аппарата. Виды пищеварения. Значение работ И.П.Павлова для изучения регуляции процессов пищеварения. Процессы пищеварения во рту и в желудке. Моторная и секреторная функции желудка.

Пищеваринеиемназывается процесс физической и хим-ой переработки пищи, в результате которого ста-новится возможным всасываение пита-тельных в-в из пищеварительного тракта, поступление их в крось и лимфу и усвоение организмом.

Физич. обработка пищи состоит в ее размельчении, перемешивании и раст-ворении содержащихся в ней в-в. Химич. изменения пищи происходят под влиянием гидролитических пище-варительных ферментов, вырабатыва-емых секреторными клетками пище-варит-ых желез.

Моторнаф ф-ция – перемешивание и передвижение по желудочно-кишечному тракту пищи за счет сокращения гла-дких мышц стенок желудка и кишеч-ника.

Секреторная ф-цияпищеварит. тракта осущ-ся соответствующими клетками, входящими в состав слюных желез по-лости рта, желез желудка и кишеч-ника, а также поджелудочной железы и печени.

Экскреторная ф-цияиграет важную роль в поддержании гомеостаза, из организма выводятся остатки непереваренной пищи и некоторые продукты обмена в-в.

Всасывающая ф-ция – поступление в кровь и лимфу различных в-в из пи-щеварительной системы при помощи фильтрации, диффузии или осмоса.

Читайте также:  Нервы при беременности влияние на плод

Переработка принятой пищи начинается в ротовой полости. Здесь происходят ее измельчение, смачивание слюной, анализ вкусовых св-в пищи, начальный гидролиз некоторых пищевых в-в и формирование пищевого комка. После измельчения и перетирания зубами пища подвергается химич. обработке благодаря действию гидролитических ферментов слюны. В полость рта открываются протоки 3 групп слюнных желез: слизистых, серозных и смешанных. Слюна – первый пищеварительный сок, его ферменты амилаза и мальтаза расщепляют углеводы, а фермент лизоцима обладает бактерицидными св-ми.

Ф-ции желудка – депонирование пищи, ее мехническая и хим-ая обработка и постепенная эвакуация пищевого со-держимого через привратник в 12-ти перстную кишку. Хим.обработка осущ-ся желудочным соком. Желудочный сок выделяется многочисленными железами тела желудка, которые состоят из главных, обкладочных и добавочных клеток. Главные клетки секретируют пищеварительные ферменты, обкла-дочные – соляную кислоту и доба-вочне – слизь. Основными ферментами желудочного сока явл-ся протеазы (расщепляют белки) и липазы (рас-щепляют жиры). Желудочный сок имеет кислую реакцию. К протеазам отно-сятся несколько пепсинов, а также желатиназа и химозин. Пепсины рас-щепляют белки до полипептидов. Дальнейший распад их до аминокислот происходит в кишечнике. Липаза желудочного сока расщепляет только эмульгированные жиры (молоко) на глицерин и жирные кислоты.

Не нашли то, что искали? Воспользуйтесь поиском:

Отключите adBlock!
и обновите страницу (F5)
очень нужно

  • Физиология
  • История физиологии
  • Методы физиологии

Регуляция дыхания

Регуляцией дыхания называют процесс управления вентиляцией легких, направленный на поддержание дыхательных констант внутренней среды организма и приспособление дыхания к изменяющимся условиям внешней и внутренней среды.

В процессе регуляции дыхания его частота, глубина, минутный объем и кровообращение приспосабливаются к изменяющимся потребностям метаболизма и к осуществлению некоторых других функций организма (речь, плач, крик, кашель, глотание).

Ранее отмечалось, что запуск каждого дыхательного цикла осуществляется инспираторным отделом дыхательного центра продолговатого мозга, который посылает к спинному мозгу и от него к мышцам вдоха поток нервных импульсов. Частота дыхательных циклов определяется частотой посылки нервных импульсов дыхательным центром. Глубина дыхания, или дыхательный объем, определяется силой сокращения дыхательных мышц, которая зависит от числа нервных импульсов в отдельной серии (пачке) импульсов, посылаемых дыхательным центром для запуска дыхательного цикла. Таким образом, регуляция частоты, глубины дыхания и вентиляции легких в конечном итоге сводится к изменению активности нейронов дыхательного центра и его отделов и осуществляется одной из функциональных систем организма.

Деятельность функциональной системы регуляции дыхания направлена на достижение конечного полезного результата — поддержание на должном уровне дыхательных констант внутренней среды организма. Ее упрощенная схема представлена на рис. 1. Этими константами являются напряжение кислорода в артериальной крови (р02), напряжениев ней углекислого газа (рС02) и рН артериальной крови и лик- вора. Нормальный уровень р02 артериальной крови при оксигенации гемоглобина 94-98% составляет 95-100 мм рт. ст., рС02 — 35-45 мм рт. ст., рН плазмы артериальной крови — 7,36-7,44 (в эритроцитах — 7,25-7,30), рН ликвора — 7,35-7,40.

Рис. 1. Схема функциональной системы регуляции напряжения кислорода, углекислого газа и кислотно-щелочного состояния внутренней среды: 1, 2, 3 — сигнализация от экстеро-, интеро- и проприорецепторов; МНГР — механизмы нейрогуморальной регуляции

Таким образом, система регуляции дыхания контролирует сразу три показателя. Данные системы в кибернетике называют системами мульти параметрического взаимосвязного регулирования и относят к весьма сложным. Основными структурными компонентами функциональной системы регуляции дыхания являются хеморецепторы, дыхательный центр, механизмы нейрогуморальной регуляции дыхания, исполнительные (эффекторные) механизмы. Они способствуют воздействию на газовый состав и рН, механизмы обратной связи, с помощью которых оценивается результативность регуляции дыхания (рис. 1).

Рис. Регуляция внешнего дыхания (на минутный объем дыхания) a — эффект pCO2 — гиперкапнический стимул, б — показатель pH; в — pO2 — гипоксический стимул

Хеморецепторы, предназначенные для оценки величины напряжения кислорода, углекислого газа, рН артериальной крови и ликвора, располагаются в сосудах и в продолговатом мозге. Они посылают информацию о газовом составе в дыхательный, сосудодвигагельный центры и другие структуры центральной нервной системы. Дыхательный центр представлен различными группами нейронов, расположенными преимущественно в продолговатом мозге и мосту. Часть этих нейронов обладает способностью спонтанно ритмически возбуждаться и формировать поток эфферентных нервных импульсов, задающих определенную частоту и глубину дыхания. Активность нейронов дыхательного центра модулируется потоками афферентных сигналов, поступающих в дыхательный центр от хеморецепторов и других рецепторов организма, а также от нейронов коры, лимбической и других областей головного мозга. В результате формируется иной характер активности нейронов дыхательного центра, приспосабливающий дыхание к характеру текущей функциональной активности и изменяющимся метаболическим потребностям организма.

Таблица. Основные хеморецепторы

Эффекторными тканями и механизмами в функциональной системе регуляции дыхания являются дыхательные мышцы, обеспечивающие внешнее дыхание, сердце, гладкие миоциты стенок сосудов и бронхов, кровь, механизмы образования и разрушения эритроцитов и гемоглобина, буферные системы и механизмы выделения кислых или щелочных продуктов почками и желудочно-кишечным трактом, метаболизм в клетках и тканях. Эффективность приспособительных изменений дыхания оценивается с помощью механизмов обратной связи.

Дыхание — одна из вегетативных функций, которая имеет произвольную регуляцию. Каждый человек может произвольно изменить ритм и глубину дыхания, задержать его на определенное время (от 20-60 до 240 с). Возможность произвольного изменения дыхания свидетельствует о регулирующем влиянии коры больших полушарий на данную функцию.

Яркие доказательства корковой регуляции дыхания получены методом условных рефлексов. Условный дыхательный рефлекс можно выработать на действие любого внешнего раздражителя, если сочетать его с каким-нибудь безусловным дыхательным рефлексом.

Г. П. Конради и З.П. Бабешки на в качестве безусловного раздражителя использовали вдыхание газовой смеси с повышенным содержанием углекислого газа (при этом возрастает легочная вентиляция). Вдыханию смеси предшествовал звук метронома на 5-10 с. После

10-15 сочетаний вдыхания смеси и звука метронома один звук метронома (без вдыхания смеси) вызывал увеличение легочной вентиляции.

Предстартовое изменение дыхания у спортсменов также является показателем его условно-рефлекторной регуляции. Ее значение в данном случае заключается в приспособлении организма к повышенной физической нагрузке, требующей увеличения газообмена. Предстартовое изменение (увеличение) глубины и частоты дыхания (одновременно с изменением деятельности сердечно-сосудистой системы) обеспечивает более быструю доставку кислорода к работающим мышцам и удаление из крови углекислого газа.

Регуляция дыхания сформировалась у человека в процессе эволюции в связи с формированием речи. Произношение осуществляется на выдохе, поэтому для осуществления речи необходимо менять глубину и ритм дыхания, благодаря чему можно достигать декламации, пения и т.д.

Нервная и гуморальная регуляция дыхания

Регуляция дыхания представляет собой приспособление легочной вентиляции к потребностям организма. Регуляция дыхания осуществляется рефлекторно и включает несколько механизмов.

Главная роль принадлежит дыхательному центру, который представляет собой совокупность клеток, расположенных в разных отделах центральной нервной системы и обеспечивающих координированную ритмическую деятельность дыхательных мышц для приспособления дыхания к изменениям внешней и внутренней среды организма.

Рис. 2. Нервная и гуморальная регуляция дыхания

Дыхательный центр головного мозга представлен инспираторным центром (группа нервных клеток, управляющих вдохом), экспираторным центром (центр выдоха) и пневмотаксическим центром, который регулирует работу инспираторного и экспираторного центров. Центры вдоха и выдоха расположены в продолговатом мозге, а пневмотаксический центр — в верхней части варолиева моста среднего мозга.

Нервные импульсы, возникающие вдыхательном центре продолговатого мозга, передаются к подчиненным двигательным центрам спинного мозга или двигательным центрам блуждающих и лицевых нервов. При нормальном дыхании регулирующие импульсы из центра вдоха поступают к межреберным мышцам и диафрагме, вызывая их сокращение, что приводит к увеличению объема грудной клетки и поступлению воздуха в легкие. Увеличение объема легких возбуждает рецепторы растяжения, расположенные в стенках легких, импульсы от них по центростремительным нервам поступают в центр выдоха. Раздражение нейронов этого центра подавляет активность нейронов центра вдоха, и поток нервных импульсов к дыхательным мышцам прекращается. Межреберные мышцы расслабляются, объем грудной полости уменьшается и воздух из легких вытесняется наружу.

Важную роль в регуляции дыхания играет гипоталамус, особенно во время поведенческих актов. Например, гипоталамическое влияние на дыхательный центр проявляется активацией дыхания при болевых раздражениях, во время физической работы, при эмоциональном возбуждении.

На деятельность дыхательного центра также оказывают влияние сигналы, идущие от верхних дыхательных путей. Рецепторы в носовых ходах иннервируются обонятельным и тройничным черепными нервами, и они чувствительны к разным химическим веществам, а также к механическим раздражителям. Реакция на их стимуляцию варьируется от апноэ до чиханья. Глоточная зона иннервируется веточкой языкоглоточного нерва. Стимуляция этой области вызывает резкие вдохи. В гортани и трахее находятся рецепторы разного типа, реагирующие на химические и механические раздражения. Иннервируются они преимущественно веточками блуждающего нерва. Их стимуляция оказывает разное влияние. При вдохе поступающий поток воздуха раздражает рецепторы слизистой оболочки носа, импульсы от рецепторов направляются в мозг по волокнам тройничного нерва и оказывают на дыхательный центр слабое тормозящее действие.

В легких имеются рецепторы трех типов, иннервируемые блуждающим нервом, так называемые рецепторы растяжения легких.

На дыхание оказывают влияние и артериальные рецепторы. Так, в артериальной и венозной системах большого круга кровообращения локализуются механорецепторы, при возбуждении которых возникают многообразные реакции. Если повышается артериальное давление, усиливается раздражение прессорных рецепторов каротидного синуса и дуги аорты, что сопровождается незначительным торможением деятельности дыхательного центра и уменьшением вентиляции легких. При снижении артериального давления, вследствие ослабления раздражения этих рецепторов, вентиляция легких, наоборот, увеличивается.

Определенное значение в акте дыхания отводится проприорецеп- торам растяжения, которые залегают в мышцах диафрагмы, стенки живота, межреберных мышцах, а также ирритантным рецепторам, расположенным в эпителии и субэпителиальном слое всех воздухоносных путей.

Приспособление дыхания к внешней среде и сдвигам, наблюдаемым во внутренней среде организма, связано с разнообразной нервной информацией, поступающей вдыхательный центр, которая предварительно анализируется в нейронах моста мозга, среднего и промежуточного мозга, а также в клетках коры головного мозга.

Определяющим фактором, влияющим на уровень дыхательных движений в организме, служит концентрация диоксида углерода в крови. Повышение содержания СО, увеличивает возбудимость структур дыхательного и пневмотаксического центров, в результате чего усиливается дыхание. Первый вдох у новорожденных также связан с увеличением концентрации С02 в крови после отделения от пуповины. Концентрация С02, достигнув порогового значения, активизирует нервные структуры дыхательного центра, и новорожденный начинает дышать атмосферным воздухом.

Стимулирующий эффект повышенного содержания диоксида углерода в крови обусловлен не только прямым действием его на клетки дыхательного центра, но и опосредованным рефлекторным влиянием на дыхательный ритм с хеморецепторов рефлексогенных зон.

Различаются две группы хеморецепторов, регулирующих дыхание: периферические (артериальные) и центральные (медуллярные). Артериальные хеморецепторы находятся в каротидных синусах и дуге аорты. Они расположены в специальных маленьких тельцах, обильно снабжаемых артериальной кровью.

Наиболее важное значение в регуляции дыхания имеют каротидные хеморецепторы. Аортальные хеморецепторы на дыхание влияют слабо, они участвуют преимущественно в регуляции кровообращения.

Хеморецепторы каротидных и аортальных телец чутко реагируют на снижение содержания кислорода в крови, посылая афферентные сигналы. Помимо этого афферентные влияния хеморецепторов усиливаются при повышении в артериальной крови содержания диоксида углерода и концентрации водородных ионов.

Функциональная активность хеморецепторов находится под контролем нервной системы. Так, при раздражении эффекторных парасимпатических волокон чувствительность хеморецепторов снижается, а при раздражении симпатических повышается. Именно хеморецепторы сигнализируют в дыхательный центр о содержании кислорода и диоксида углерода в крови. Центральные хеморецепторы находятся в продолговатом мозге. Они реагируют на изменения рН спинномозговой жидкости. Центральные хеморецепторы оказывают более сильное влияние на деятельность дыхательного центра, чем периферические.

Нервная регуляция дыхания. Дыхательный центр расположен в продолговатом мозге. Он состоит из центров вдоха и выдоха, которые регулируют работу дыхательных мышц. Спадание лёгочных альвеол, которое происходит при выдохе, рефлекторно вызывает вдох, а расширение альвеол рефлекторно вызывает выдох. При задержке дыхания мышцы вдоха и выдоха сокращаются одновременно, благодаря чему грудная клетка и диафрагма удерживаются в одном положении. На работу дыхательных центров оказывают влияние и другие центры, в том числе расположенные в коре больших полушарий. Благодаря их влиянию дыхание изменяется при разговоре и пении. Возможно, также сознательно изменять ритм дыхания во время физических упражнений.

Гуморальная регуляция дыхания. При мышечной работе усиливаются процессы окисления. Следовательно, в кровь выделяется больше углекислого газа. Когда кровь с избытком углекислого газа доходит до дыхательного центра и начинает его раздражать, активность центра повышается. Человек начинает глубоко дышать. В итоге избыток углекислого газа удаляется, а недостаток кислорода восполняется. Если концентрация углекислого газа в крови понижается, работа дыхательного центра тормозится и наступает непроизвольная задержка дыхания. Благодаря нервной и гуморальной регуляции в любых условиях концентрация углекислого газа и кислорода в крови поддерживается на определенном уровне.

1.2. Система дыхания

Если сердце представляет собой насос, перекачивающий кровь и обеспечивающий ее доставку ко всем тканям, то легкие — главный орган дыхательной системы — насыщают эту кровь кислородом.

Чтобы яснее представить себе функциональные и резервные возможности дыхательной системы, вспомним анатомо-физиологические особенности аппарата дыхания. Он состоит из воздуховодных путей и легких. Воздуховодные пути включают в себя носоглотку, гортань, трахею, бронхи и бронхиолы, доставляющие атмосферный воздух в альвеолы, огромное количество которых и составляет собственно легочную ткань. Альвеолы — это тонкостенные, наполненные воздухом пузырьки, густо оплетенные кровеносными легочными капиллярами. Подсчитано, что легкие содержат около 600-700 млн. альвеол. Площадь их поверхности при выдохе равняется 30 м 2 , а при глубоком вдохе, т.е. при растяжении, достигает 100-120 м 2 . Напомним, что поверхность всего тела составляет около 2 м 2 .

Рис. 1. Система органов дыхания

Оказывается, физические нагрузки увеличивают число альвеол в легких, совершенствуя тем самым дыхательный аппарат и увеличивая его резервы.
Благодаря исследованиям А. Г. Эйнгорна (1956) было установлено, что у спортсменов количество альвеол и альвеолярных ходов увеличено на 15-20% по сравнению с таковыми у незанимающихся спортом. Это значительный анатомический и функциональный резерв. Дыхание осуществляется последовательным чередованием вдоха и выдоха. В норме здоровый взрослый человек в покое делает в среднем 15-18 вдохов и выдохов в минуту, причем за один вдох в легкие поступает примерно 500 мл воздуха. Эта величина называется дыхательным объемом, или дыхательным воздухом. Таким образом, вентиляция легких в одну минуту составляет 7.5-9 л. После обычного вдоха усилием воли можно дополнительно вдохнуть какое-то количество воздуха, он называется дополнительным. Точно так же после обычного выдоха возможно еще выдохнуть некоторое количество воздуха, его называют резервным. Сумма дыхательного, дополнительного и резервного воздуха составляет жизненную емкость легких.
Физические упражнения оказывают большое влияние на формирование аппарата дыхания. У спортсменов, например, жизненная емкость легких достигает 7 л и более. Спортивные врачи сборных команд страны по баскетболу и лыжам зарегистрировали величины, равные 8100 и 8700 мл.

Конечно, спортсмены — это люди, как правило, с изначально хорошими физическими данными. Но физические нагрузки развивают любой организм.
Обследование школьников одного возраста и с одинаковыми антропометрическими данными показали, что основные параметры внешнего дыхания, кислородного пульса (количество кислорода, используемое организмом за одно сокращение сердца), объема сердца, максимального потребления кислорода, работоспособности были выше в среднем на 20-27% у тех из них, кто занимался спортом.

При максимальных физических нагрузках частота дыхания может возрасти до 50-70 в минуту, а минутный объем дыхания до 100-150 л, т.е. в 10-15 раз превысить этот показатель, отмечаемый в состоянии покоя.

Хорошо развитый дыхательный аппарат — надежная гарантия полноценной жизнедеятельности клеток. Ведь известно, что гибель клеток организма в конечном итоге связана с недостатком в них кислорода. И напротив, многочисленными исследованиями установлено, что чем больше способность организма усваивать кислород, тем выше физическая работоспособность человека. Тренированный аппарат внешнего дыхания (легкие, бронхи, дыхательные мышцы) — это первый этап на пути к улучшению здоровья.
При использовании регулярных физических нагрузок максимальное потребление кислорода, как отмечают спортивные физиологи, повышается в среднем на 20-30%.
У тренированного человека система внешнего дыхания в покое работает более экономно. Так, частота дыхания снижается до 8-10 в минуту, при этом несколько возрастает его глубина. Из одного и того же объема воздуха, пропущенного через легкие, извлекается большее количество кислорода.

Именно этот механизм — своеобразный мягкий массаж — имеют в виду специалисты лечебной физкультуры, рекомендуя некоторые упражнения дыхательной гимнастики для лечения органов пищеварения. Впрочем, индийские йоги с давних пор лечат заболевания желудка, печени и кишечника дыхательной гимнастикой, эмпирически установив целебное ее действие при многих недугах брюшной полости.
Периодическое повышение и понижение внутригрудного давления в акте дыхания существенно отражается и на кровоснабжении самого сердца. Во время вдоха при увеличении объема грудной клетки создается присасывающая сила отрицательного давления, которая усиливает приток крови из полых вен и легочной вены к сердцу. При этом, что особенно важно, расширяется просвет питающих сердце коронарных артерий, и сердце получает больше кислорода. Можно напомнить, что снижение кровотока именно в этих сосудах создает угрозу возникновения стенокардии и инфаркта миокарда — болезни номер один современного общества.

К регулирующему эффекту глубокого дыхания многие больные прибегают интуитивно. Пациенты рассказывали, как они научились купировать начинающийся приступ пароксизмальной тахикардии (болезненно учащенное сердцебиение), используя глубокий вдох с небольшим натуживанием. Физиологи считают, что усиленный вдох оказывает влияние на сердечный кровоток, а также на блуждающий нерв, который способен регулировать работу сердца.

В то же время недостаточно развитый аппарат внешнего дыхания может способствовать развитию различных болезненных нарушений в организме, ибо недостаточное поступление кислорода влечет за собой повышенную утомляемость, падение работоспособности, снижение сопротивляемости организма и рост риска заболеваний. Такие распространенные болезни, как ишемическая болезнь сердца, гипертония, атеросклероз, нарушение кровообращения головного мозга, так или иначе связаны с недостаточным поступлением кислорода.

Насколько важно повысить использование кислорода, настолько же важно выработать устойчивость организма к гипоксии, т.е. к кислородному голоданию тканей. Потому что возникающие при этом неблагоприятные изменения, которые вначале являются обратимыми, затем ведут к заболеваниям. При гипоксии страдает в первую очередь центральная нервная система: нарушается тонкая координация движений, появляются головная боль, сонливость, теряется аппетит. Затем снижаются обменные процессы, угнетаются функции внутренних органов. Наступают быстрая утомляемость, слабость, падает работоспособность. Любая работа, особенно умственная, требует больших усилий. Длительное воздействие гипоксии часто приводит к необратимым изменениям в сердце, печени, ускоренному развитию атеросклероза, раннему старению.
Как выработать устойчивость организма к недостатку кислорода? Рецепт прежний — тренировкой. Отличный тренирующий эффект дает продолжительное пребывание в горах на высоте около 2000-2500 м, где содержание кислорода (парциальное давление) в атмосферном воздухе снижено. Организм постепенно привыкает к недостатку кислорода, перестраивая свои функции и мобилизуя защитные резервы. Но всех желающих потренироваться невозможно переселить в горы. Следовательно, нужны способы создания искусственной гипоксии. Одним из таких способов является дыхательная гимнастика, в которую включаются упражнения с волевой задержкой дыхания (кстати, после неправильного использования именно таких упражнений мы наблюдали дыхательный дискомфорт).

Дата добавления: 2015-03-11 ; просмотров: 1666 . Нарушение авторских прав

Читайте также:

Нервная система человека © 2020

Adblock
detector